Ko'proq

Georeferentsiya elektron jadvaliga CartoDB dan foydalanishda xatoning ma'nosi?

Georeferentsiya elektron jadvaliga CartoDB dan foydalanishda xatoning ma'nosi?


Men CartoDB xaritasini Ism, shahar, davlat va garov ustunli sarlavhalari bo'lgan Google Docs elektron jadvaliga bog'ladim. Ammo, agar men elektron jadvalni georeferentsiya qilishga harakat qilsam, shaharlar uchun "sizning tanlovingiz uchun ko'pburchakli ma'lumotlar yo'q" degan xato paydo bo'ladi. Nima degani bu?


Bu shuni anglatadiki, bizning ichki geokoderimizda shahar uchun ko'pburchak chegarasi yo'q, faqat u joylashgan nuqta.

Analog misol sifatida siz mamlakatlar, shtatlar, okruglar, pochta indekslari uchun (AQShda; CAN; FRA; ESP; AUS) bizda ko'pburchaklar borligini tekshirishingiz mumkin.

Bu shuni anglatadiki, bizda bunday ma'lumot yo'q. Agar sizda alohida ehtiyojlar bo'lsa, biz bilan bog'lanishingiz mumkin va biz sizni ma'lumotni (agar mavjud bo'lsa) olish mumkin bo'lgan manbaga yo'naltirishga harakat qilamiz. Shuningdek, biz umumiy ma'lumotlar bo'limini taklif qilamiz (boshqaruv panelidagi yuqori o'ng burchak havolasi), unda qiziqarli ma'lumotlar to'plamlari (AQShdagi Kongress tumanlari kabi) mavjud.

Biz har kuni ichki geokoderimiz va umumiy ma'lumotlar bo'limidagi ma'lumotlarni ko'paytirish uchun ishlaymiz :-)


Georeferentsiya elektron jadvaliga CartoDB dan foydalanishda xatoning ma'nosi? - Geografik axborot tizimlari

Georeferensiya kalkulyatori uchun qo'llanma

Ushbu hujjatning o'rniga quyidagilar qo'yilgan:
Bloom DA, Wieczorek JR, Zermoglio PF. 2020. Georeferentsiya kalkulyatori bo'yicha qo'llanma. Kopengagen: GBIF kotibiyati. https://doi.org/10.35035/gdwq-3v93

Georeferensiya kalkulyatorining eng so'nggi versiyasini quyidagi manzilda topish mumkin.
http://georeferencing.org/georefcalculator/gc.html

Ushbu hujjatda tasvirlangan georeferentsiya kalkulyatori-bu JavaScript ilovasi bo'lib, tabiat tarixi muzeylarida topilgan topilmalar kabi tavsiflangan joylarni georeferentsiyasida yordam beradi. U dastlab sutemizuvchilar tarmoqli axborot tizimi (MaNIS) uchun ishlab chiqilgan va BioGeomancer va GeoLocate kabi yarim avtomatik georeferentsiya vositalarini to'ldirish uchun boshqa keng ko'lamli georeferentsiya loyihalarida keng qo'llanilgan. Ilova MaNIS/HerpNET/ORNIS georeferensiya bo'yicha ko'rsatmalarda tasvirlangan usullar yordamida hisob -kitoblarni amalga oshiradi.

Kalkulyatorni ishga tushirish, hujjatni ko'rib chiqish uchun foydali bo'ladi, yoki kalkulyatorning mustaqil versiyasini yuklab oling (http://manisnet.org/gci2.zip) yoki http: // manisnet saytidagi onlayn versiyadan foydalaning. .org/gci2.html. Ilovani yuklash tugagach, u quyida, 1 -rasmdagidek, ko'proq yoki kamroq bo'lishi kerak.

Shakl 1. Georeferensiya kalkulyatori birinchi ochilganda ekran tasviri.

Kalkulyator foydalanuvchiga georeferentsiya jarayonida bir bosqichdan ikkinchisiga o'tish uchun zarur bo'lgan narsani ko'rsatish uchun mo'ljallangan. Umumiy ish oqimi:

1 -qadam: Siz bajarmoqchi bo'lgan hisob turini tanlang.

2 -qadam: Siz georeferentsiya qilmoqchi bo'lgan joyga eng mos keladigan turini tanlang.

3 -qadam: Hisoblash uchun zarur bo'lgan barcha parametrlarni kiriting. Kalkulyator hisoblash uchun zarur bo'lgan qiymatlar uchun matn va tanlash qutilarini ko'rsatadi.

Ro'yxatni kengaytirish uchun "Hisoblash turi" ning o'ng tomonidagi tugmani bosing. Ro'yxat kengaytirilganda, ilova quyida 2 -rasmdagi kabi ko'rinishi kerak.

Shakl 2. 1 -qadam: Hisoblash turini tanlash.

Siz bajarmoqchi bo'lgan hisob turini tanlang. Agar siz nomlangan joy va ofsetlar asosida koordinatalar va xatolarni aniqlamoqchi bo'lsangiz, "Koordinatalar va xato" variantini tanlang. Agar sizda oxirgi manzil uchun koordinatalar mavjud bo'lsa va siz faqat xatoni hisoblamoqchi bo'lsangiz, "Faqat xato" variantini tanlang. Agar siz ma'lum joyning koordinatalarini, masalan, xaritaning burchagidan, ma'lum bo'lgan koordinatalar asosida aniqlashingiz kerak bo'lsa, "Faqat koordinatalar" variantini tanlang.

QAYD: "Faqat xato" variantini tanlab, kalkulyator har doim "Kenglik va uzunlik" maydonlariga qo'lda kiritilgan koordinatalarning o'nlik kenglik va uzunlik ekvivalentini qaytaradi. "Koordinatalar va xatolar" yoki "Faqat koordinatalar" variantlaridan foydalanganda, kalkulyator har doim kiritilgandan farqli ravishda o'nlik kenglik va uzunlikni qaytaradi, chunki joy tavsifi bu koordinatalardan bir yoki bir nechta siljishlarga ega bo'ladi.

Koordinatalarni hisoblash va xato

"Koordinatalar va xatolar" hisoblash turini tanlagandan so'ng, ekranda "Mahalliy turi" uchun yangi ochiladigan ro'yxat qutisi paydo bo'ladi. Bu ro'yxat kengaytirilganda, ilova quyida 3 -rasmdagi kabi ko'rinishi kerak.

Shakl 3. Koordinatali hisoblash 2 -qadam: Mahalliy turni tanlash.

Koordinatalar va xatolarni aniqlashga harakat qilayotgan joy turiga mos keladigan joy turini tanlang.

Mahalliy turni tanlagandan so'ng, sahifada bir qator boshqaruv elementlari paydo bo'ladi. Bu boshqaruv elementlari tanlangan joy turiga tegishli bo'lgan barcha parametrlarni kiritish yoki tanlash imkonini beradi. Quyidagi 4-rasmda "Turar joyi" ochiladigan ro'yxatidan "Sarlavhadagi masofa" turini tanlashda, georeferentsiya kalkulyatorining tasviri ko'rsatilgan.

Shakl 4. Sarlavhada masofani o'z ichiga olgan hududni georeferentsiya qilish uchun tegishli parametrlar.

Faraz qilaylik, siz georeferentsiya qilmoqchi bo'lgan joy "Beyersfilddan 10 km E" ("Havo orqali)" sarlavhasida masofa "turini tanlash qutisida ko'rsatilganidek. Aytaylik, siz Beysfildning koordinatalarini (35 ° 22 '24 "N, 119 ° 1' 4" Vt) USGS Gosford 1: 24,000 Quad xaritasidan shahar markazini bir soniya ichida aniqlab olgansiz. Ma'lum koordinatalarga ega bo'lgan joydan ofset yordamida qanday koordinat qilishni o'rganish uchun bo'limga qarang Faqat koordinatalarni hisoblash.

Boshlash uchun "USGS xaritasi: 1: 24,000" ni koordinatali manba ochiladigan ro'yxatidan tanlang. Keyin, "Koordinatalar tizimi" ochiladigan ro'yxatidan "daraja soniyalarini" tanlang, so'ng paydo bo'ladigan kenglik va uzunlik maydonlariga Beykerfild koordinatalarini kiriting. Har bir koordinata maydonining o'ng tomonidagi ochiladigan ro'yxatlardan to'g'ri yo'nalishlarni tanlashga ishonch hosil qiling.

QAYD: Bu misol uchun "daraja -soniya graduslari" koordinatali tizimi tanlangan, chunki xaritada koordinatalar soniya soniyalarda ko'rsatilgan, shuning uchun Beykerfild markazi uchun aniqlangan koordinatalar xuddi shunday tasvirlangan. Ayrim hollarda, xaritadagi yoki boshqa manbadagi koordinatalar o'nli daqiqalarda ko'rsatilishi mumkin, masalan, 35 ° 22 'K, 119 ° 0' Vt yoki 35 ° 22.4 'K, 119 ° 1.066667' V. 35.3733333, -119.0177778 kabi o'nlik darajalarda taqdim etilishi kerak. Kalkulyatorda tanlangan koordinata tizimi xaritada yoki boshqa manbada ishlatiladigan koordinata tizimini aks ettirishi kerak.

Gosford Quad xaritasi 1927 yilgi Shimoliy Amerika gorizontal ma'lumotlarini ishlatadi, shuning uchun Datum ochiladigan ro'yxatidan "(NAD27) Shimoliy Amerika 1927" ni tanlang. Aksariyat hollarda xaritaning pastki qismida ko'rsatilgan ma'lumotlarni topishingiz mumkin. Ba'zan xaritada ma'lumotlar o'rniga ellipsoid ko'rsatiladi. Kalkulyator, shuningdek, Datum ochiladigan ro'yxatida ellipsoidlarni o'z ichiga oladi. Agar siz Kalkulyatorda bo'lmagan ma'lumotlarga ega bo'lgan xarita kabi manbani topsangiz, onlayn ma'lumotlardan foydalanib, ushbu ma'lumot uchun ellipsoidni topishga harakat qiling, so'ngra ma'lumotlar bazasi ochiladigan ro'yxatidan ellipsoidni tanlang.

Bu misoldagi koordinatalar bir soniyaga qadar aniqlangan, shuning uchun ochiladigan ro'yxatdagi "Eng yaqin sekund" ni tanlang. Mahalliy tavsifda berilgan yo'nalish E (sharqda), shuning uchun Yo'nalish ochiladigan ro'yxatida "E" ni tanlang. Ofset masofasi 10 milya (milya), shuning uchun ofset masofasi matn maydoniga "10" yozing.

Beykerfild - bu juda katta joy va biz bilmaymiz, asl joy shahar markazidan 10 mil uzoqlikda yoki shahar chegarasidan 10 mil uzoqlikda (yoki umuman boshqa narsa), shuning uchun ko'rsatilgan koordinatalardan 3 mil narida joylashgan. shaharning sharqiy chekkasida (xaritada o'lchanganidek), nomlangan joyning maydoni 3 mil bo'lishi kerak. Matn maydonining nomini "3" kiriting.

QAYD: Agar siz bu masofani kilometr bilan o'lchagan bo'lsangiz, siz hisoblagichning pastki qismidagi masofaviy konvertor yordamida kilometrlarni milga aylantira olasiz va kerakli maydonga aylantirilgan raqamni kiritishingiz mumkin (konvertorlardan foydalanishni o'rganish uchun "Masofa va o'lchov konvertorlari" bo'limiga qarang). ). Kalkulyator to'g'ri natija berishi uchun barcha masofa o'lchovlari joy tavsifi bilan bir xil tizimda bo'lishi kerak.

Beykerfild uchun koordinatalarni aniqlash georeferens xaritadan foydalangan asboblar, o'lchash asboblaridagi birliklarning o'lchami va georefererning xaritadagi narsalarga nisbatan joylashishini farqlash qobiliyatiga ega. Xaritaning o'zi bilan bog'liq har qanday xato koordinatali manba tanlovida hisobga olinadi. Georeferencerning xaritada o'lchash qobiliyati bilan bog'liq xato "O'lchov xatosi" maydonida hisobga olinadi.

O'lchov xatosi maydonini to'ldirish uchun siz avval xaritada ishonchli (takroriy) o'lchashingiz mumkin bo'lgan eng kichik masofani aniqlashingiz (yoki taxmin qilishingiz) kerak. Odatda, odamlar millimetr bo'linmalari bo'lgan o'lchagichni hisobga olgan holda, xususiyatlar yoki joylarni taxminan bir (1) millimetrgacha ajrata oladilar. Agar siz o'lchagichni inglizcha birliklari bilan ishlatsangiz, 1/16 dyuymgacha ajratishingiz mumkin. Sizning o'lchash asbobingiz, ko'rish qobiliyatingiz va texnikangiz sifati bu taklif qilingan qiymatlarni o'zgartirishi mumkin.

Siz izchil va to'g'ri o'lchashingiz mumkin bo'lgan eng kichik masofani aniqlagandan so'ng, bu qiymatni va birliklarni kalkulyatorning pastki qismidagi o'lchov konvertoriga kiriting, siz o'lchagan xaritaning o'lchovini tanlang, so'ngra aylantirmoqchi bo'lgan o'lchov birligi. Masalan, agar siz 1: 24000 xaritada 0,1 mm gacha aniqlik bilan o'lchab beradigan raqamli o'lchash asbobidan foydalansangiz va milga aylantirishingiz kerak bo'lsa, shkala konvertoriga 0,1 kiriting, so'ng birliklar tushishidan "mm" ni tanlang. -ro'yxat. Keyin ochiladigan ro'yxatdagi "1: 24000" o'lchovli variantni tanlang. Nihoyat, ikkinchi ochiladigan ro'yxatda "mi" ni tanlang. Milga aylantirilgan 1: 24000 da 0,1 mm ga javobingiz ko'k rangda ko'rsatiladi (0.00149 mil). Keyin "O'lchov xatosi" maydoniga "0.00149" yozishingiz yoki kesish va yopish klaviatura kombinatsiyalari yordamida o'lchov konvertoridan ko'chirishingiz mumkin.

Keyin, masofa birliklari ochiladigan ro'yxatida "mi" tanlanganligiga ishonch hosil qiling, chunki bu joy mil bilan tasvirlangan ("10 mil E."). Bu joydagi masofa komponenti 10 milni tashkil etadi, bu aniq milga yaqin (bu mavzu bo'yicha munozarani Georeferensiya bo'yicha ko'rsatmalarda ko'ring). Ochiladigan ro'yxatdagi "Masofa aniqligi" bo'limida "1 mil" ni tanlang. Endi ushbu joyning barcha parametrlari kiritilgandan so'ng, sizning kalkulyatoringiz 5 -rasmdagi kabi ko'rinishi kerak.

Shakl 5. "Sarlavhadagi masofa" joyi uchun kiritilgan barcha parametrlari bo'lgan kalkulyator.

Keyin Hisoblash tugmachasini bosing. Hisoblangan koordinatalar (har doim o'nlik gradusda ko'rsatiladi) (bu misolda "Beyersfilddan 10 mil E (havo orqali)" va hisoblash uchun maksimal xato masofasi masofa va o'lchov ustidagi boshqaruv elementlarida ko'rsatiladi. 6 -rasmda ko'rsatilganidek, kalkulyatorning pastki qismidagi konvertorlar.

Shakl 6. "10 mil E (havo orqali) Beykerfild" joyi uchun hisoblangan natijalar.

Ko'k rangdagi natijalarni ajratib ko'rsatish va standart almashish tugmachalari yordamida tizimning buferiga ko'chirish va elektron jadval yoki ma'lumotlar bazasiga o'tkazish mumkin. Yangi koordinatalar va maksimal xatolik ostidagi uzun matnli maydonda joriy hisob-kitoblar uchun ma'lumotlar ajratilgan yozuv mavjud. Bu ma'lumotlarni birdaniga nusxalash va bir xil maydon tartibiga ega bo'lgan elektron jadvalga yoki ma'lumotlar bazasiga joylashtirish mumkin, ular quyidagi atamalardan iborat: decimalLatitude, decimalLongitude, coordinateUncertaintyInMeters, geodeticDatum, verbatimCoordinateSystem, Extent, MaxErrorDistance, DistanceUnits va DistancePrecision, DistancePrecision, . Belgilangan shartlar Darvin Core standarti bilan belgilanadi (http://rs.tdwg.org/dwc/terms/). E'tibor bering, hisoblash natijalari bo'yicha berilgan CoordinatePrecision - bu yakuniy natijaning aniqligi emas, balki kirish koordinatalarining aniqligi, shuning uchun bu Darvin yadrosining "coordinatePrecision" atamasi bilan bir xil emas.

QAYD: Agar siz koordinatali tizim ochiladigan ro'yxatidan yangi tanlovni tanlasangiz, ro'yxatning mazmuni yangi tizimni aks ettirish uchun o'zgaradi va "Koordinatali aniqlik" ochiladigan ro'yxatidagi qiymat "eng yaqin darajaga" tiklanadi. Koordinata tizimini o'zgartirgandan so'ng, koordinatali aniqlik qiymatini belgilashga ishonch hosil qiling.

Yangi hisobni boshlash uchun siz tegishli ochiladigan ro'yxatdan yangi hisob turini va/yoki yangi joy turini tanlashingiz yoki hisobning bir xil turi va hisobi bo'lsa, keyingi hisobingiz uchun zarur bo'lgan barcha parametrlar uchun yangi ma'lumotlarni kiritishingiz mumkin. turi. Agar joy turi avvalgi georeferentsiya qilingan joy bilan bir xil bo'lsa, mahalliy turini qayta tanlash shart emas. Ochiladigan ro'yxatlarda tanlangan qiymatlar foydalanuvchi tomonidan o'zgartirilmaguncha tanlangan bo'lib qoladi va shu bilan bir xil nomga ega bo'lgan joylar guruhlari uchun hisob-kitoblarni osonlashtiradi.

Ma'lum koordinatalarga ega bo'lgan joyning xatosini hisoblash uchun "Hisob turi" ochiladigan ro'yxatidan "Faqat xato" ni tanlang. "Faqat xato" ni tanlagandan so'ng, ekranda "Mahalliy turi" ochiladigan ro'yxati paydo bo'ladi. Bu ro'yxat kengaytirilganda, kalkulyator quyidagi 7 -rasmdagi kabi ko'rinishi kerak.

Shakl 7. Xato faqat hisoblash, 2 -qadam: Mahalliy turni tanlash.

Maksimal xato masofasini aniqlashga harakat qilayotgan joy turiga mos keladigan joy turini tanlang. Kalkulyator MaNIS/HerpNET/ORNIS georeferensiya bo'yicha ko'rsatmalarda (http://manisnet.org/GeorefGuide.html) tasvirlangan barcha turlar uchun maksimal xato masofasini (yoki maksimal noaniqlikni) hisoblashi mumkin.

Joy turini tanlagandan so'ng, sahifada bir qator boshqaruv elementlari paydo bo'ladi. Bu boshqaruv elementlari tanlangan joy turiga tegishli bo'lgan barcha parametrlarni kiritish yoki tanlash imkonini beradi. Quyidagi 8-rasmda "Turar joy turi" ochiladigan ro'yxatidan "faqat masofa" turini tanlagandan va xuddi shu parametrlar kiritilgandan va hisob koordinatalarini hisoblash misolidagi kabi georeferensiya kalkulyatorining tasviri ko'rsatilgan. Xato bo'limi, yuqorida.

Shakl 8. "Faqat masofa" joyi uchun "Faqat xato" hisobini ko'rsatuvchi ekran tasviri.

Ko'k rangdagi natijalarni ajratib ko'rsatish va standart nusxa ko'chirish va joylashtirish tugmachalari yordamida tizimning clipboardiga nusxalash mumkin. Xatolarni hisoblash tugmachasi bosilganda sahifada ko'rsatiladigan boshqaruv elementlarigina xatolarni hisoblab chiqadi.

QAYD: Agar siz koordinatali tizimning ochiladigan ro'yxatidan yangi tanlovni tanlasangiz, koordinata aniqligi "eng yaqin darajaga" tiklanadi. Koordinata tizimini o'zgartirgandan so'ng, koordinata aniqligini qayta o'rnatganingizga ishonch hosil qiling.

Yangi hisoblashni boshlash uchun siz tegishli ochiladigan menyulardan yangi hisob turini va yangi joy turini tanlashingiz yoki keyingi hisobingiz uchun zarur bo'lgan barcha parametrlar uchun yangi ma'lumotlarni kiritishingiz mumkin. Agar joy turi avvalgi georeferentsiya qilingan joy bilan bir xil bo'lsa, mahalliy turini qayta tanlash shart emas. Ochiladigan ro'yxatlarda tanlangan qiymatlar foydalanuvchi tomonidan o'zgartirilmaguncha tanlangan bo'lib qoladi va shu bilan bir xil nomga ega bo'lgan aholi punktlari uchun xatolarni hisoblashni osonlashtiradi.

Faqat koordinatalarni hisoblash

Ba'zida, joy tavsifining o'ziga georeferentsiya qilishdan oldin, koordinatalarni aniqlash kerak bo'lishi mumkin. Masalan, "10 km E (havo orqali) Beykersfild" georeferentsiyasi uchun, butun hudud georeferentsiya qilinishidan oldin "Beykerfild" koordinatalarini aniqlash kerak. Faraz qilaylik, sizning koordinata manbai USGS Gosford 1: 24,000 Quad xaritasi. Siz Beykerfildning markazi deb hisoblagan xaritadagi nuqtani aniqlagandan so'ng, xaritaning eng yaqin burchagi kabi ma'lum koordinatalarga ega bo'lgan qulay nuqtani toping. Bu holda, xaritaning shimoli -sharqiy burchagi eng yaqin va ma'lum koordinatalari bilan belgilanadi 35 ° 22 ”30” N, 119 ° 00 ’Vt.

Hisoblashni boshlash uchun "Turning faqat koordinatalari" ni tanlang (chunki siz faqat Beykersfild markazining koordinatalarini topishni xohlaysiz), sizning hisob turi sifatida "ortogonal yo'nalishdagi masofa" turar joy turini tanlang (chunki siz janub va g'arbni o'lchaysiz). xaritaning burchagidan Beykerfildning markazi). Keyin, koordinata manbai sifatida "USGS xaritasi: 1: 24,000" ni va koordinata tizimi sifatida "soniya soniyalarini" tanlang. Ma'lum nuqta koordinatalarini (xaritaning burchagi, bu misolda) Kenglik va Uzunlik maydonlariga kiriting (35 ° 22 ”30” N, 119 ° 00 'V - to'g'ri yarim sharning asosiy yo'nalishlarini e'tiborsiz qoldirmang. ). Nihoyat, ma'lumot sifatida "(NAD27) Shimoliy Amerika 1927" ni tanlang. Tugallangach, Kalkulyator quyida 9 -rasmdagi kabi ko'rinishi kerak.

Shakl 9. "Faqat koordinatalar" hisoblash turi uchun ma'lum parametrlar bilan to'ldirilgan kalkulyator maydonlari.

Endi o'lchash asbobidan foydalanib, a) xaritaning shimoli -sharqiy burchagi va Beykerfild markazining kenglik chizig'ining xaritaning sharqiy chetiga to'g'ri keladigan masofasi va b) xaritaning shimoli -sharqiy burchagi orasidagi masofani o'lchash. va Beykerfild markazining uzunlik chizig'i, u xaritaning shimoliy chetiga to'g'ri keladi. Bu sizning xaritaning shimoli -sharqiy burchagidagi ma'lum nuqtaning S va V gacha bo'lgan ortogonal masofalaringiz.

ESLATMA: Siz xaritalarda (mm, sm yoki dyuym) o'lchovlarni mahalliy (mil, bu misolda) ko'rsatilgan masofa birligiga aylantirishingiz kerak bo'ladi. Hisoblash uchun siz Kalkulyatorning pastki qismidagi Scale Converter -dan foydalanishingiz mumkin ("Masofa va o'lchov konvertorlari" bo'limiga qarang). O'lchovlarning to'g'riligi o'lchash asbobingizda ko'rsatilgan birliklarning kattaligiga va ularning xaritadagi narsalarga nisbatan joylashishini farqlash qobiliyatiga qarab belgilanadi, shuning uchun siz o'lchash mumkin bo'lgan birliklarga qarab yakuniy koordinatalar farq qilishi mumkin. Bu noaniqlik "Koordinatalar va xatolar" va "Faqat xatolar" hisoblash turlarining O'lchov xatosi maydonida hal qilinadi va georeferentsiya jarayonining keyingi bosqichlariga kiritiladi.

Biz Beykerfildning markazi bo'lishni aniqlagan nuqta 35 ° N kenglik chizig'idan 8 mm janubda va 119 ° V uzunlik chizig'idan 67 mm g'arbda joylashgan. Milimetrlarni milga aylantirish uchun o'lchov konvertoridan foydalangandan so'ng, milning qiymatlarini kalkulyatorning o'ng tomonidagi "Ofset masofa" qutilariga kesib qo'ying va joylashtiring: 0.1193 ni "Shimoliy yoki janubiy ofset masofasi" maydoniga joylashtirish yoki kiritish kerak. asosiy yo'nalish ochiladigan ro'yxat "S" (janub) ga o'rnatilishi kerak. 0.99916 ni Sharq yoki G'arbiy ofset masofasi maydoniga yopishtirish yoki yozish kerak, va asosiy yo'nalish ochiladigan ro'yxat "V" (g'arb) ga o'rnatilishi kerak. "Masofa birliklari" ochiladigan ro'yxatida mil "mil" ko'rsatilishi kerak, chunki bu birlikda ko'rsatilgan. Kalkulyator endi hisobni bajarish uchun zarur bo'lgan barcha parametrlarga ega va quyida 10 -rasmda ko'rsatilgandek bo'lishi kerak.

35 22 23.7702 -119 1 3.70272

Shakl 10. "Faqat koordinatalar", "Ortogonal yo'nalishlar bo'ylab masofa" uchun kiritilgan barcha parametrlarga ega bo'lgan kalkulyator xaritadagi burchakdan o'lchanadigan koordinatalarni hisoblash.

Keyin Hisoblash tugmachasini bosing. Beykerfildning markaziy nuqtasi uchun hisoblangan koordinatalar (har doim o'nlik gradusda), quyida 11 -rasmda ko'rsatilganidek, kalkulyatorning pastki qismidagi Hisoblash tugmachasining chap tomonida, ko'k rangda ko'rsatiladi.

Shakl 11. "Faqat koordinatalar" yordamida Beykerfildning markaziy nuqtasi uchun hisoblangan natijalar.

Endi sizda Beyersfildning "10 mil E (havo orqali) Beykersfild" uchun boshlang'ich koordinatalari bor, siz georeferentsiyaga o'tishingiz mumkin. Bu jarayonni boshlash uchun, targ'ib qilish tugmachasini bosing va 12 -rasmda ko'rsatilganidek, Kalkulyator tomonidan berilgan natijalardan "O'nlik va uzunlik" maydonlariga ekvivalent DecimalLatitude va DecimalLongitude nusxasini ko'chiring.

Shakl 12. Kalkulyator oldingi hisob -kitob natijalari bo'yicha kenglik va uzunlik maydonlariga koordinatalarni kiritgandan keyin.

Georeferensiyani yakunlash uchun Kalkulyatorning yuqori qismidagi Hisoblash turini "Koordinatalar va xato" ga, Mahalliy turini "Sarlavhadagi masofa" ga o'zgartiring va yuqoridagi "Koordinatalar va xatolar" bo'limida tasvirlangan amallarni bajaring.

QAYD: Hisob turi yoki joylashuv turi o'zgartirilganda, parametrlar maydonidagi ma'lumotlar saqlanib qoladi, koordinatali aniqlik bundan mustasno. Keyingi hisob -kitoblarni amalga oshirish uchun Kalkulyatordagi ma'lumotlarni qayta o'rnatish yoki yangilash kerak bo'lishi mumkin. Agar kerak bo'lsa, koordinatali aniqlikni tiklashni unutmang.

Masofa va o'lchov konvertorlari

Kalkulyatorda georeferentsiya jarayonida qo'shimcha manbalarga bo'lgan ehtiyojni yo'q qilish uchun ikkita konvertor o'rnatilgan, biri masofa uchun, ikkinchisi shkalada. Ikkalasi ham Kalkulyatorning pastki qismida joylashgan va hisob turi va joy turi tanlanganidan keyin paydo bo'ladi.

Bir birlikdan ikkinchisiga, masalan, 10 mildan X kilometrgacha masofani o'zgartirish uchun, masofa konvertorining birinchi maydoniga "10" yozing. Keyin, chap tomondagi ochiladigan ro'yxatdan "mi" ni tanlang. Milni kilometrga aylantirish uchun o'ng tomondagi ochiladigan ro'yxatda "km" ni tanlang. Natijada avtomatik ravishda konvertorda, ko'k rangda (16.09344 km, bu misolda) paydo bo'ladi, pastdagi 14 -rasmga qarang. Bu natijani Kalkulyatorning boshqa maydoniga ko'chirish uchun kesish va joylashtirish tugmalar birikmalaridan foydalaning.

Shakl 14. 10 milni kilometrga aylantiradigan masofa konvertori.

Xarita va o'lchash asbobidan foydalanganda, ma'lum bir hudud uchun georeferentsiyani bajarish uchun millimetr yoki dyuym kabi birliklarda o'lchangan masofani haqiqiy dunyo birliklariga (milya, kilometr) aylantirish kerak. "10 km E (havo orqali) Beykerfild" georeferentsiyasi uchun, masalan, Kalkulyatorga kiritilgan barcha parametrlar (masofa va o'lchov konvertorlari bundan mustasno) mil bilan bo'lishi kerak.

O'lchovi 1: 50000 bo'lgan xaritadan foydalanib, 8 santimetrlik xaritani milga aylantirish uchun Skale Converter -ning birinchi maydoniga "8" yozing. Keyin, chap tomondagi ochiladigan ro'yxatda "sm" ni tanlang, so'ngra ochiladigan ro'yxatdagi xaritalar shkalasini ("1: 50000") tanlang. Santimetrni milga aylantirish uchun o'ng tomondagi ochiladigan ro'yxatdan "mi" ni tanlang. Natijada avtomatik ravishda ko'k rangda paydo bo'ladi (2.48548 milya, bu misolda), quyidagi 15 -rasmga qarang. Bu natijani Kalkulyatorning boshqa maydoniga ko'chirish uchun kesish va joylashtirish tugmalar birikmalaridan foydalaning.

Shakl 15. 8 smni 1: 50000 ga milga aylantirish, o'lchov konvertori.

Georeferencing kalkulyatori Java 2 yoki undan keyingi versiyasi yoqilgan har qanday brauzerda ishlashini kuting. Kalkulyatorni birinchi marta brauzeringizga yuklaganingizda biroz kechikish kuting. Shundan so'ng, agar sizning brauzer sozlamalari bunga ruxsat bersa, fayllar keshlanadi va yuklanish ancha tezroq bo'ladi.

Hisoblash - Kalkulyatorga kiritilgan ma'lumotlar natijasida yangi koordinatalarni, xatolarni va boshqa o'zgaruvchilarni hisoblash uchun ishlatiladigan tugma. To'liq ro'yxat uchun tab bilan ajratilgan hisoblash natijasi lug'atiga qarang.

Hisoblash turi - ochiladigan ro'yxat, uning yordamida uchta hisob turidan birini tanlash mumkin:

Koordinatalar va xato - joy tavsifidagi nomlangan joyning koordinatalari ma'lum bo'lganda, ularni aniqlashda ishlatiladigan parametrlar asosida koordinatalar to'plamini va ular bilan bog'liq xatoni aniqlash uchun ishlatiladi.

Faqat koordinatalar - ma'lum bo'lgan joy koordinatalarini aniqlash uchun ishlatiladi, agar ma'lum koordinatalar to'plamiga masofalar o'lchanadigan bo'lsa. Misol: xaritaning burchagida ko'rsatilgan koordinatalar orasidagi masofalarga qarab nomlangan joyning koordinatalarini topish.

Faqat xato - joy tavsifining yakuniy koordinatalari allaqachon ma'lum bo'lganida xatoni aniqlash uchun ishlatiladi. Bu, albatta, quyidagi mahalliy turlarga tegishli: faqat koordinatalar, faqat nomlangan joy, faqat masofa va yo'l bo'ylab masofa.

Koordinatali aniqlik - ularning manbasida koordinatalar to'plami ko'rsatilgan aniqlik toifasi. Aniqlik uchun mumkin bo'lgan qiymatlar to'plami koordinata tizimiga asoslangan. "Aniq" qiymati - bu ro'yxatda ko'rsatilgan boshqa aniqlikdan yuqori bo'lgan aniqlik darajasi. Manbalarga qog'oz yoki raqamli xaritalar, raqamli tasvirlar, GPS, gazetalar yoki joy tavsiflari kirishi mumkin. Misollar: 35 22 '24 "= eng yaqin soniya.

Koordinatali manba - koordinatalar olingan asbob yoki boshqa manbalar (xarita, GPS, gazeta, joy tavsifi).

Koordinatalar tizimi - koordinata manbasining asl geografik koordinatalar tizimini (o'nlik gradus, soniya soniya, o'nli o'nlik daqiqa) belgilaydi. Asl koordinatalar tizimini tanlash koordinatalarni ona formatida kiritish imkonini beradi va kalkulyatorni koordinatalar aniqligi uchun mos qiymatlarni ko'rsatishga majbur qiladi.

Ma'lumotlar (Geodezik ma'lumotlar) - koordinatalar berilgan manba uchun koordinatalarga asoslangan ellipsning kelib chiqishi va yo'nalishini aniqlaydi. Kalkulyator ma'lumotlarning ochiladigan ro'yxatida ellipsoidlarni o'z ichiga oladi, chunki ba'zida bu koordinatali manbalar ko'rsatadigan narsadir. Misollar: WGS84, NAD27

Ellipsoid - Erning 3 o'lchamli modelining shakli va o'lchami. Ellipsoid ma'lumotlari Georeferensiya kalkulyatori tomonidan qo'llab -quvvatlanadigan hisob -kitoblarning turlarini bajarish uchun etarli. Misollar: Clarke 1866 ellipsoid, International 1924 ellipsoid.

O'nli kenglik - ma'lum bir hisoblash uchun olingan kenglikni o'nlik gradusda ko'rsatadi. Qarang, kenglik.

O'nli uzunlik - ma'lum bir hisoblash uchun hosil bo'lgan uzunlikni o'nlik gradusda ko'rsatadi. Qarang, uzunlik.

Yo'nalish - Kalkulyator iloji boricha ko'proq yo'nalish turlarini joylashtirish uchun mo'ljallangan. Kompasdagi 32 nuqtaning qisqartmalarini o'z ichiga oladi. Yo'nalish va boks kompasi haqida ko'proq ma'lumotni http://en.wikipedia.org/wiki/Boxing_the_compass saytida o'qishingiz mumkin.

Eng yaqin daraja-"Yo'nalish" ochiladigan ro'yxatidan "eng yaqin daraja" varianti tanlansa, "Yo'nalish" ochiladigan ro'yxatining o'ng tomonidagi Kalkulyatorda bo'sh maydon paydo bo'ladi. Belgilangan joydan joy tavsifida berilgan (0 shimol, 90 sharq va boshqalar) sarlavhasini kiriting. Misol: "Sakramento daryosining og'zidan 122 ° da 7 mil masofada" Eslatma: agar rulman uning o'rniga nomlangan joyga berilgan bo'lsa, rulmanni 180 gradus masofaga kiriting. Misol: "Whale Rockga 1,5 km 262 daraja", buning uchun bo'sh maydonga "82" kiriting.

Masofaviy konvertor - Kalkulyatorning pastki qismidagi o'lchovlarni uzunlik birligidan boshqasiga o'tkazish uchun mo'ljallangan asboblar to'plami. Misol: 10 mil = 16.09344 kilometr.

Masofa aniqligi - masofani aniq o'lchash va aniq tasvirlash. Misollar: "Devisning 6 mil shimolida" uchun "1 mil" ni tanlang, "Lissabonning 3.2 SE" uchun "1/10 km" ni tanlang.

Masofa birliklari - haqiqiy dunyoda joy tavsifida ishlatiladigan birliklarni o'rnatish uchun ishlatiladi. Tegishli o'lchovlar va xatolarni hisoblash uchun kalkulyatorni sozlash uchun tavsifda ko'rsatilgan asl birliklardan foydalaning. Misollar: "10 km E (havo orqali) Beykerfild" uchun "mi" ni tanlang, "Lissabondan 3,2 km DK" uchun "km" ni tanlang.

Nomlangan joyning kengligi - geografik markazdan nomlangan joy yoki xususiyat bilan qoplangan geografik hududning eng chekka nuqtasigacha bo'lgan masofa. Nomlangan joylarning turlariga shahar hududlari, kichik shaharlar, o'rta shaharlar, olis joylar, ko'cha manzillari, ulanish va o'tish joylari, an'anaviy va noan'anaviy obektlar (ko'llar, tog'lar, madaniy erlar, qo'riqxonalar, bog'lar va boshqa geografik ob'ektlar) kiradi.

GPS aniqligi - Koordinata manbai sifatida "GPS" tanlansa, O'lchov xatosi matn qutisidagi yorliq "GPS aniqligi" ga o'zgaradi. Koordinatalar olingan vaqtda GPS tomonidan berilgan qiymatni yoki 2000 yil 1 -maydan keyin ochiq joylar uchun 30 m yoki boshqa sharoitlarda 100 m masofani kiriting.

Tillar - Kalkulyator ingliz, ispan, portugal, frantsuz yoki golland tillarida ishlatilishi mumkin. Tilni Kalkulyatorning yuqori chap burchagidagi tillar ro'yxati yordamida o'zgartirish mumkin. Ingliz tili varianti nozik farqlar bilan ikkita variantga ega. "Ingliz tili" Kalkulyator va barcha teglar va formatlarni ingliz tilida taqdim etadi. "Ingliz tili (mahalliy)" Kalkulyator ingliz tilida taqdim etiladi, u ishlayotgan kompyuterning mahalliy sozlamalari saqlanib qoladi. Shunday qilib, frantsuz tili uchun tuzilgan kompyuter, kasrni ajratuvchi sifatida vergul yordamida raqamlarni ko'rsatadi va ko'rsatadi. Ochiladigan tillar ro'yxatida "Ingliz tili" ni tanlash kalkulyatorni davrni o'nlik ajratuvchi sifatida ishlatishga majbur qiladi. Boshqa barcha tillar tanlovi nafaqat tilni, balki raqam formatini mos keladigan tarzda o'zgartiradi.

Kenglik - ekvatorning shimoli yoki janubidagi burchak (0 kenglik). Ekvatorning shimoliy kengliklari konventsiya bo'yicha ijobiy, janubdagi kengliklar esa manfiydir. Kalkulyator kenglik va uzunlik uchun gradusga asoslangan koordinatali tizimlarni qo'llab-quvvatlaydi: soniya soniyalar (35 ° 22 '24 "N), o'nlik graduslar (35.3733333), va o'nli kasrli daqiqalar (35 ° 22,4 N).

Mahalliy tur - geografik havola qilinadigan joy tavsifining eng aniq qismining namunasi. Kalkulyator hisoblashi mumkin bo'lgan oltita variant mavjud: faqat koordinatalar, yo'l bo'ylab masofa, ortogonal yo'nalishdagi masofa, sarlavhadagi masofa, faqat masofa va faqat nomlangan joy. Nomlangan joylarga misollar uchun Nomlangan joyning ko'lamini ko'ring.

Faqat koordinatalar - misollar: 35 ° 22 ’24” N, 119 ° 1 ’4” V 35.3733333, -119.0177778

Yo'l bo'ylab masofa - Misol: Beyersfilddan 13 km E (shtat avtomagistrali 178)

Ortogonal yo'nalishlar bo'ylab masofa - Misol: Beyersfilddan 2 mil E 3 mi N

Sarlavhadagi masofa - Misol: 10 km E (havo orqali) Beykerfild

Faqat masofa - Misol: Beykerfilddan 5 mil

Faqat nomlangan joy - misollar: "Beykerfild", "Pontchartren ko'li", "Yosemit milliy bog'i"

Uzunlik - asosiy meridianning sharqiy yoki g'arbiy burchagi (uzunlik 0) - shimoliy va janubiy qutblar orasidagi yoy. Asosiy meridianning sharqiy uzunliklari shartli ravishda ijobiy, g'arbdagi uzunliklar esa manfiy. Kalkulyator kenglik va uzunlik bo'yicha gradusga asoslangan koordinatali tizimlarni qo'llab-quvvatlaydi: soniya gradusli soniyalar (35 ° 22 '24 ”N), o'nlik graduslar (35.3733333) va gradusli o'nli daqiqalar (35 ° 22.4 N).

Maximum Error Distance (coordinateUncertaintyInMeters) - The combination of all sources of error (coordinate uncertainty, map scale, extent, GPS accuracy, measurement error, unknown datum, imprecision in direction measurements, and imprecision in distance measurements) in given calculation expressed as a linear distance, which can be thought of as a radius of a circle of uncertainty containing the entirety of the possible places a locality description could mean.

Measurement Error - Accounts for error associated with the ability to distinguish one location from another using any measuring tools, such as rulers on paper maps.

Offset Distance - The linear distance from a point of origin. Offset are used for localities that are measured by orthogonal directions (3 km N, 2 km E) or headings (N, SE, 262°).

North or South Offset Distance - The distance of an orthogonal direction to the north or south of a known line of latitude.

East or West Offset Distance - The distance of an orthogonal direction to the east or west of a known line of longitude.

Promote - Button used to copy calculated coordinates from the “results” fields (Decimal Latitude, Decimal Longitude) into the Latitude and Longitude fields in preparation for a new calculation based on the previous results, eliminating the need to copy manually or to use cut and paste keyboard combinations. Used when the calculated coordinates represent the coordinates of a named place in locality description. Example: Using the “Coordinates only” calculation type, the coordinates for the named place “Tiny Town” are calculated. These coordinates, presented in the “results” fields, can be promoted up into the Latitude and Longitude fields to georeference the locality description “3 km SE Tiny Town” using the “Coordinates and error” calculation type.

Scale Converter - A set of controls at the bottom of the Calculator comprising a tool designed to convert units of measure from a given map scale into units in real world distances. Example: 8 cm at a 1:50000 map scale = 2.48548 miles.

Tab-delimited Calculation Result - The long field immediately under the Calculate and Promote buttons displays the complete set of values returned as a result of a calculation. Variables returned consist of of Darwin Core (http://rs.tdwg.org/dwc/) terms first (underlined) followed by other relevant data, in the following order: decimalLatitude , decimalLongitude , coordinateUncertaintyInMeters , geodeticDatum , verbatimCoordinateSystem , Extent, MaxErrorDistance, DistanceUnits, DistancePrecision, and CoordinatePrecision (this CoordinatePrecision is the precision of the input coordinates, not the final outcome, thus this is not the same as the Darwin Core term “coordinatePrecision”).

Version - Displayed in the bottom left-hand corner of the Calculator as yyyymmdd(language). Example: 20110430en = English version created April 27, 2011. The changes from version to version are given in a change log file.


Fon

Georeferencing is an essential first step towards enabling GIS-based analyses of public health data [1, 2]. It is the process by which textual descriptions of the geographic provenance of cases and diagnostic specimens are transformed into digital spatial data (longitude and latitude coordinates “geocoding” is generally used to refer to the simpler process of adding geographic coordinates to postal addresses) [3]. The georeferencing process has been generalized into the following components: input records, reference datasets (e.g., gazetteers), and a georeferencer (the algorithm used to normalize, standardize, and match input records to the reference dataset) [4]. Ideally, the process is documented with detailed metadata [5].

The value of georeferenced public health data to state [6] or national [7, 8] public health systems is clear, as it enables all spatial data analysis. However, nearly all research on the efficiency, reliability, and accuracy of georeferencing methods has relied on examples of contemporary input records and reference datasets from North America and Europe [9], possibly because georeferencing methods evolve as the availability and accuracy of reference datasets increase [4]. In contrast, our study compares three georeferencing approaches to legacy monkeypox data from villages across Central and West Africa.

Qualitative assessments of different georeferencing methods for public health data have been developed previously [10–14]. Efforts aimed at georeferencing public health data in data-poor parts of the world include trypanosomiasis in Africa [15] and malaria globally [16]. However, although these studies acknowledge the challenges faced during the georeferencing process for locations where reference data are sparse or of poor quality, they do not provide a comparison of various georeferencing methods that could guide future studies needing georeferenced disease data.

Monkeypox background

Monkeypox (MPX) virus was first identified as an agent of human disease in 1970 in the Democratic Republic of Congo (“DRC,” then Zaire) [17]. Prior to that date, MPX virus had been isolated only from captive cynomologous monkeys [18]. MPX presents clinically in a manner nearly indistinguishable from smallpox, and thus was cause for great concern among public health officials trying to eradicate smallpox [19].

During 1970–1986, human MPX cases were identified from seven countries across Central and West Africa as a result of localized active disease surveillance efforts (summarized in Figure 1). MPX cases have since been identified in Gabon [20] and the Republic of Congo [21]. Even more recently, a limited outbreak of human MPX in the United States was linked to rodents imported from Ghana [22], and human MPX cases have been identified in South Sudan [23].

Total reported MPX case distribution across Central and West Africa, 1970–1986. The distribution of MPX cases in seven countries where MPX cases were reported through the joint WHO/CDC surveillance efforts, including the total number of cases identified within each county [24]. Countries labeled in gray without numbers indicate locations where additional MPX or MPX-related disease have occurred since 1986 [20–23].

An MPX-specific research agenda was outlined in 1969 to address the problems that MPX posed to the smallpox eradication campaign [25]. Under this plan, World Health Organization (WHO) Collaborating Centers in the United States and the former Soviet Union, the Centers for Disease Control (CDC), and the Moscow Research Institute for Viral Preparations, respectively, provided laboratory diagnostic services, enabling new information on MPX to be assembled. This collaborative work supported serological studies during the 1970’s and into the 1980’s [26]: surveillance activities intensified during 1981–1986 [26–28], when 21,994 specimens were tested from Congo, Ivory Coast, Sierra Leone, and Zaire [24]. During this period of intensified surveillance, 228 cases were confirmed by electron microscopy or virus culture only 99 cases were confirmed based on serology alone, while 11 additional cases died before specimens could be collected. In all, during 1970–1986, 404 cases of human MPX disease were documented and confirmed [24].

Collection of diagnostic specimens from suspected cases of MPX followed a system established by WHO during the smallpox eradication campaign [25]. Staff at local health facilities were responsible for completing semi-standardized case forms at the time diagnostic specimens were collected from patients. Specimens and forms were sent to WHO Headquarters in Geneva, Switzerland, where they were divided and sent on to the two collaborating centers. After diagnostic testing, a diagnostic result form was generated by the lab results were either cabled to WHO Headquarters, or sent directly to personnel in the field.

During the active surveillance period, summary information from the case forms for the 404 confirmed cases was organized in data tables. Later, WHO researchers generated a digital spreadsheet of individual case information the geographic information in this spreadsheet enabled subsequent MPX research [29]. The spreadsheet contains five hierarchical place name fields for each case: country, region, district/zone, town, and locality. Unfortunately, details of the provenance of the data on the WHO spreadsheets are not known. In 2007, CDC researchers discovered that in the late 1980’s, after much of the initial research agenda regarding orthopoxviruses had been completed, many of the CDC laboratory diagnostic records were converted to microfilm and the originals likely destroyed. The microfilm has since been scanned digitally, and converted to PDF formats. Preliminary comparisons of data from a few case forms against the information in the WHO spreadsheet identified several inconsistencies, which served as a motivation for this study.

An active area of recent MPX ecology and epidemiology research is based on GIS mapping and modelling techniques used to search for patterns between the locations of case occurrences and geographic and environmental variables [24, 29–31]. Historically, broad association of MPX virus and tropical forest was observed in early MPX research [32–34] later, continental-scale ecological niche models showed that disease occurrence had stronger association with mean annual precipitation than with land cover [29]. Subsequent analyses at finer spatial scales constrained to within the Congo Basin, however, pointed back to proximity to dense forest [30], probably reflecting different scales and resolutions. However, studies to date have not considered the quality of the georeferencing of the case occurrence data used as model inputs—this point, although seemingly a simple methodological step, ends up being quite important.

Here, we test the hypothesis that different levels of effort invested in the georeferencing process can introduce considerable biases into geographic models of disease transmission. Specifically, we produce three georeferencing data sets for the MPX disease occurrences based on the same original WHO data, but differing in the detail and care with which they were derived. The first was based on automated georeferencing modules developed to facilitate the georeferencing process for biodiversity data (“automated data set”). Such automated approaches approximate the level of care and attention that many researchers pay to this step, and indeed exceed greatly the standards of some studies, which have depended on Internet search engines such as Google, Bing, and Yahoo maps, along with Open Street Map. The second data set, or “worked data set,” was developed by consulting a broader suite of geographic data sources to refine the first. This method explores the results one might obtain if not intimately aware of the nuances of a set of disease data. The final data set, or “researched data set,” was developed by consulting both geographic datasets and legacy CDC records (“researched data set”). This method represents the product of exhaustive searches for the greatest number of highest-quality georeferences could produce for our study system.

To compare the results of these methods, we developed ecological niche models and maps of potential MPX distributions based on each of the three occurrence data sets, and thereby can assess the effects of the different georeferencing methods on maps of MPX transmission risk (this latter defined for the purposes of this particular example as the potential for transmission at a site, given its environmental characteristics and geographic position).


"Subscript out of range" indicates that you've tried to access an element from a collection that doesn't exist. Is there a "Sheet1" in your workbook? If not, you'll need to change that to the name of the worksheet you want to protect.

Why are you using a macro? Excel has Password Protection built-in. When you select File/Save As. there should be a Tools button by the Save button, click it then "General Options" where you can enter a "Password to Open" and a "Password to Modify".

When you get the error message, you have the option to click on "Debug": this will lead you to the line where the error occurred. The Dark Canuck seems to be right, and I guess the error occurs on the line:

because most probably the "Sheet1" does not exist. However, if you say "It works fine, but when I save the file I get the message: run-time error '9': subscription out of range" it makes me think the error occurs on the second line:

Could you please check this by pressing the Debug button first? And most important, as Gordon Bell says, why are you using a macro to protect a workbook?


5 javob 5

Contrary as occurs with built-in functions like =NOW() that return an new value every time that the spreadsheet is recalculated, custom functions are recalculated only when their arguments change. So if we have a sheet which ID is 503917557 , then the resulting formula is

if the name of the sheet with >503917557 is changed, the argument of the above formula is still the same, so it will not be recalculated.

It's worthy to note that if we overwrite a cell with exactly the same formula, the formula will not be recalculated either, because the optimization algorithm of Google Sheets see this action as "nothing happened".

On previous versions of Google Sheets Google Apps Script allowed the use of functions like NOW(), TODAY() and other deterministic built-in functions as custom function arguments, but nowadays they aren't allowed.

The current workarounds are

Use the web browser refresh feature as custom functions are recalculated on opening the spreadsheet

Add a dummy argument, like adding a number that is incremente every time that we want the formula to be recalculated, example:

Update the cell value by using a script able to be called from an installable trigger, custom menu, button, etc.

Below is my original answer.

The proper way to make that a custom function to recalculate is to change a parameter of it. Regarding the use of NOW() and other similar built-in functions as paremeters of custom functions, from Custom functions in Google Sheets

Custom function arguments must be deterministic. That is, built-in spreadsheet functions that return a different result each time they calculate — such as NOW() or RAND() — are not allowed as arguments to a custom function. If a custom function tries to return a value based on one of these volatile built-in function, it will display Loading. cheksiz.

From a comment by Mogsdad to this answer:

In fact, rather than "Loading. ", this will display an #ERROR!, This function is not allowed to reference a cell with NOW(), RAND(), or RANDBETWEEN()

You create a tick box, for example at cell C1, and then set your target cell as:

When you untoggle and re-toggle the tick box, the function will be called again and the result updates. Still manual, but probably better than refreshing the page.

I assume you are using this as a function in a cell in the spreadsheet. Presumably, you would like it to update immediately upon changing the name of the tab. I don't know of any way to do this.

That said, if you go to File -> Spreadsheet Settings -> Calculation -> Recalculation , you can change that to On change and every minute .

Bu qudrat update it within a minute of the change, although the description claims it works only with time-based functions.

A custom script on a cell of a spreadsheet will only execute itself when the parameters defined on a function defined on the cell has changed or manipulated. If they remain same, the earlier result is driven from the cache.

Obviously you may use Now() on any cell and then pass that cell to your function parameter. Make sure to change the spreadsheet settings -> calculation -> onchange every minute. (This will change the parameter of the function every minute and thus the script will be executed)

Latest updated on Spreadsheet doesn't seem to be allowing Now() or Rand() or such functions anymore to be passed indirectly/directly to the custom function.

Add a 'Refresh' menu item and maybe go to your script and define a function which changes the value of a cell when you click the 'Refresh' menu. Pass the value as a parameter to your function where you are executing your script.

Go to your script and make a function. Let's say updateCellValue(). Now define the same logic here which is aimed at changing the value of a cell.

Example: SpreadsheetApp.getActiveSpreadsheet().getRange('A1').setValue(new Date().toTimeString())

Now go to Edit->Current Project's trigger and create a trigger that will trigger your function(updateCellValue) after every custom-defined time limit. This will do the same thing as solution B but you won't have to click the Refresh button of menu.

Seems like a bit of hack but probably I feel that's the only way as of now to update the spreadsheet for custom-defined functions like fetching data dynamically from a server.


DIGITAL GEOLOGIC MAPPING PROGRAM

Field Data Collection and Primary Compilation

As with any geologic mapping program, the most fundamental and important aspect of mapping using GIS technology is the collection of accurate, detailed field data. GSA has a highly qualified, experienced team of geologic mappers that form the nucleus of our mapping program. This team works under the guidance of a state-wide geologic mapping committee, composed of government, academic, and private sector geologists, that assists in the selection of quadrangles to be mapped through a prioritization process. Selected quadrangles are then formally proposed for mapping to USGS under the STATEMAP part of the National Cooperative Geologic Mapping Program and funded proposals are implemented as mapping projects by GSA. Data are collected using standard and accepted field mapping techniques incorporating traverses, measurements, observations, sampling, and detailed written and photographic documentation. Field data are initially compiled and interpreted by the mapping team on scale-stable contact prints produced from scale-stable film positives of 7.5-minute topographic quadrangle sheets acquired from USGS.

Preparation for Digital Capture and GIS Database Development

Preparation of data for digital capture generally consists of three parts: (1) transfer of features for each map feature type onto scale-stable overlays to facilitate digitization, (2) uniquely identifying each feature of each type, and (3) entry of feature attribute data, along with unique identifiers, into a spreadsheet program. In order to minimize the possibility of introducing errors, the mapping geologist or geologists are responsible for data preparation in coordination with the GIS Specialist assigned to the project. We have found that this not only involves the geologist in the digital data capture process and encourages interaction between the mapper and the GIS Specialist, but also adds a level of quality control, in that the geologist, through familiarity with the study area and the data set, is more likely to recognize errors and mistakes than the GIS Specialist at this phase, thereby minimizing changes later in the process.

In general, we have found that the compiled and interpreted working maps discussed above tend to become very cluttered with information, leading to the possibility of confusion or error during the digitization process. This is especially true in areas of complex geology. Hand-drawn and
-written information on the compilation map includes symbolized lines for geologic contacts, faults, and the axes of structural features, symbols indicating where structural orientation data were collected, geologic sections were measured, samples were taken, and contacts were exposed, and annotation, such as the names of structural features, codes for geologic units, dip values, and other notes. For digital data capture purposes, we have determined that it is desirable to separate features of different type by transferring each feature type (or subset thereof) onto a clear, scale-
stable overlay that is punch-registered to the original compilation map. Georeferencing for each overlay is accomplished by transferring the corner tics from the quadrangle to the overlay. The primary feature types on a geologic map are: (1) polygon or area features (areal extent of geologic units), (2) lines (contacts, faults, etc.), (3) points (structural data points, exposed contacts, etc.), and (4) text. It is also helpful to depict each feature on an overlay in its simplest form. For example, on the compilation map, an approximately located thrust fault would appear as a dashed line with teeth on the upper plate, whereas an approximately located geologic contact is indicated by a dashed line. For the purposes of digital data capture, these features are transferred to the overlay as simple lines. Similarly, structural data points, depicted on the map as strike and dip symbols and symbols for horizontal and vertical beds, are transferred as simple points located at the center of the symbol.

After transfer to the overlays, each feature is assigned a unique number that will later be used to link attribute information to the feature. For each overlay, features are numbered consecutively, in most cases beginning with 1. We normally begin numbering in the upper left-hand corner of the quadrangle and attempt to make the numbering scheme as easy to follow as possible, particularly in areas with dense features. This facilitates using the capability of the GIS digitizing system to automatically increment the identification number for each new feature in the feature database, thereby allowing the GIS specialist to quickly capture the data without stopping to enter unique numbers.

The last step in data preparation is the entry of feature attribute and ancillary data onto spreadsheet. We use a spreadsheet software package for data entry primarily because the majority of our staff is familiar with its use for data compilation and manipulation and, thus, no special training is required. Tables are prepared for each feature overlay and, in these tables, feature data are keyed to the above unique numbers for features. Information entered into the tables include orientation data for structural measurements (strike, dip, bearing, plunge, etc.), codes for point and line symbolization, codes for colors of geologic units, descriptive names for features (e.g., "thrust fault, approximately located"), annotation for named geologic features (e.g., "Fungo Hollow deformed zone"), geologic unit names (e.g., "Newala Limestone") and codes (e.g., "On"), notes, remarks, etc. Having this information as part of the eventual GIS database facilitates automation of many of the orientation, symbolization, and annotation requirements for hardcopy output of the geologic map, as well as provides a robust geologic database for use in various applications.

Importantly, the spreadsheet tables are also used to calculate orientation angles for geologic symbols and annotation that require orientation, such as strike and dip symbols or geologic feature names that need to appear on hardcopy output at some angle to the horizontal. In the GIS system used, all point features, including text anchored to a justification point, have a "hidden" database attribute for rotation angle ($ANGLE) and the default value for this attribute is zero. Further, negative azimuth angles indicate clockwise rotation of the point about its center. Thus, a rotation angle of "-90" indicates a clockwise rotation (toward the east) of 90 degrees. As an example, we have created a geologic symbol set in which a strike and dip symbol with zero rotation corresponds to north strike with dip to the east, whereas a symbol with an angle of -90 corresponds to east strike with dip to the south. During field data collection, the mapping team records strike and dip data in the traditional quadrant notation form, such as N35E, 20SE. To facilitate the calculation of symbol orientation, these data are entered into spreadsheet columns as follows: strike quadrant (e.g., NE), degrees from north (e.g., 35), dip direction (e.g., SE), and dip amount (e.g., 20). At this point it is possible, using the sorting functions of the spreadsheet application, to segregate measurements into groups based on the eight possible combinations of orientation (i.e., N-S strike with E dip, N-S strike with W dip, E-W strike with N dip, E-W strike with S dip, NE strike with SE dip, NE strike with NW dip, NW strike with SW dip, and NW strike with NE dip). Following this grouping, the rotation angle can be either entered explicitly for the North-South and East-West strikes (0 (N with E dip), -90 (E with S dip), -180 (N with W dip), and -270 (E with N dip)) or calculated with a formula for orientations that are oblique to the cardinal points. It is important to note that only eight entries are necessary using the "Fill/Down" spreadsheet function for each group entry, regardless of the number of data points in the each group. In this example, the formula entries for the oblique orientations are as follows: NE strike with SE dip -- rotation angle (RA) = (strike angle +180 (-1)) NE strike with NW dip -- RA = (strike angle (-1)) NW strike with SW dip -- RA = (strike angle -360) NW strike with NE dip -- RA = (strike angle -180). In our experience, the sorting and calculation process, including formula entry, takes less than five minutes. Though not absolutely necessary, as a clean-up step, we generally sort the data by unique number after the calculation process has been completed. The final step is to convert the spreadsheets to dBASE III database format files using the "Save As/DBF 3" command. The GIS can directly import dBASE III files into the INFO database, thus saving time and effort in linking the data to map features (using the unique ID) after data capture. At this point, preparation of data is complete.

Digital Data Capture and GIS Database Development

At present, digital capture of geologic map features from the overlays discussed above is accomplished by manual digitization on a high-accuracy digitizing table using the GIS's digitizing system. Each overlay is attached to the table and registered to the quadrangle's corner tics extracted from GSA's master 7.5-minute Universal Transverse Mercator (UTM) coordinate system grid, which was generated in the GIS using the latitude and longitude coordinates for the corners of each 7.5-minute quadrangle with area in the State of Alabama and projecting the resulting base into the UTM coordinate system. An acceptable maximum residual mean squares (RMS) error for registration of each sheet is adopted and rigidly adhered to. If registration results in unacceptable RMS error, the overlay is re-registered until within the acceptable limit. Registration of overlays in this manner to a mathematically generated base assures highly accurate georeferencing of each. Features on each overlay are digitized consecutively by unique number. After digitization, the GIS layer for each overlay is processed to generate topology, checked for topological errors, and edited until all such errors are corrected. At this point, check plots are generated at map scale and checked against the overlays for obvious errors. After correction, additional check plots are generated at map scale on scale-stable media and checked against overlays and the original compilation map for proper registration and feature location. This process continues in an iterative fashion until all digitizing errors are corrected and the digital data exactly correspond to the overlays and original compilation map.

Upon completion of the topologically correct GIS layers for each overlay, we proceed with GIS database development. This consists of attaching the data from the spreadsheets above (saved as dBASE III files) to the GIS data sets. The dBASE III files are imported into INFO database tables and these tables are joined to the feature attribute tables using the software's table joining function on the basis of the common unique identification number for each feature. Once these tables are joined, the digital data development part of the digital geologic mapping process is essentially complete.

Map Production

The digital data for a geologic map are compiled for printed output using interactive GIS map composition tools. The databases developed above contain all of the information necessary for automated symbolization, orientation, and location of geologic features and observations and text for annotation. The GIS specialist, through the use of commands to set certain parameters (map scale, page size, linesets, symbolsets, fonts, etc.) and database queries to call up desired overlay layers and features, can quickly assemble a cartographic-quality geologic map. At GSA, we have created line, symbol, and color-fill sets that incorporate standard and accepted geologic symbology and map features are drawn with these elements using codes that are included in the database. Cartographic elements, such as titles, legends, neatlines, arrows, pointers, leaders, scales, etc. are easily added to the map through an interactive, on-screen process. At the present time, we use pen, electrostatic, and ink-jet plotters for on-demand map output and have also produced scale-stable film output for use in preparation of plates for printing on an offset press.

Future Plans

There are several areas that are integral to the continued development and automation of digital geological (and other) mapping in the GIS environment at GSA. Our process would be greatly accelerated (and much less labor intensive) with a migration from manual digitizing to utilization of scanning technology for data capture. We presently have the software capability for raster to vector data conversion and hope to acquire a large-format, high-resolution scanner in the near future for this purpose. We would also like to begin to incorporate Global Positioning System (GPS) and digital data logging technology into our field data collection efforts. Much of the data that is presently entered in field notebooks by hand and transferred to spreadsheet tables at a later time can be directly captured in a digital format in the field along with locational data using a GPS unit with attached data logger or laptop computer. These data can be directly imported into the GIS, thus saving considerable time and duplication of effort. Finally, we would like to continue to enhance our computer and software capabilities in terms of power, speed, functionality, and storage capacity in order to be able to take full advantage of new innovations in digital mapping and GIS technology.


Colonial rationale and resistance

Colonial powers justified their conquests by asserting that they had a legal and religious obligation to take over the land and culture of indigenous peoples. Conquering nations cast their role as civilizing “barbaric” or “savage” nations, and argued that they were acting in the best interests of those whose lands and peoples they exploited.

Despite the power of colonizers who claimed lands that were already owned and populated by indigenous peoples, resistance is an integral part of the story of colonialism. Even before decolonization, indigenous people on all continents staged violent and nonviolent resistance to their conquerors.


If it's highly correlated with the outcome and not correlated with the other predictors, you should almost certainly include it, as it increases the power to detect the effect of other other predictors. In a randomized trial, the baseline measure of the outcome variable is the most important control variable.

If it is correlated with the other predictors, it is a theoretical question whether to include it in the model. If you include it in the model it changes the meaning of your other parameters, and whether you want that or not depends on what you want to know.

Your outcome is height, your predictor is gender (dummy coded female is reference category.

You predict height with gender. The regression parameter you get is the difference between the heights of males and females in your sample.

You also know hair length. Hair length is correlated with both gender and height. You put that into the model. The parameter estimate associated with gender now means . I have no idea.

It turns out this is a sample of kids. You also know their age, and age is uncorrelated with gender, but correlated with height. So you put age into the model. The parameter estimate associated with gender does not change, but the standard error drops (hence you have more power)

The size of the correlation between hair length and age, or height and age, is not relevant to the decision of whether to include them in the model.


6. Measuring Angles

Angles can be measured with a magnetic compass, of course. Unfortunately, the Earth's magnetic field does not yield the most reliable measurements. The magnetic poles are not aligned with the planet's axis of rotation (an effect called magnetic declination), and they tend to change location over time. Local magnetic anomalies caused by magnetized rocks in the Earth's crust and other geomagnetic fields make matters worse.

For these reasons, land surveyors rely on transits (or their more modern equivalents, called theodolites) to measure angles. A transit consists of a telescope for seeing distant target objects, two measurement wheels that work like protractors for reading horizontal and vertical angles, and bubble levels to ensure that the angles are true. A theodolite is essentially the same instrument, except that some mechanical parts are replaced with electronics.

Surveyors express angles in several ways. When specifying directions, as is done in the preparation of a property survey, angles may be specified as bearings or azimuths. A rulman is an angle less than 90° within a quadrant defined by the cardinal directions. An azimut is an angle between 0° and 360° measured clockwise from North. "South 45° East" and "135°" are the same direction expressed as a bearing and as an azimuth. An interior angle, by contrast, is an angle measured between two lines of sight, or between two legs of a traverse (described later in this chapter).

In the U.S., professional organizations like the American Congress on Surveying and Mapping, the American Land Title Association, the National Society of Professional Surveyors, and others, recommend minimum accuracy standards for angle and distance measurements. For example, as Steve Henderson (personal communication, Fall 2000, updated July 2010) points out, the Alabama Society of Professional Land Surveyors recommends that errors in angle measurements in "commercial/high risk" surveys be no greater than 15 seconds times the square root of the number of angles measured.

To achieve this level of accuracy, surveyors must overcome errors caused by faulty instrument calibration wind, temperature, and soft ground and human errors, including misplacing the instrument and misreading the measurement wheels. In practice, surveyors produce accurate data by taking repeated measurements and averaging the results.


Model 3: K nearest neighbours

We would like to try K nearest neighbours to try to improve our pricing accuracy. We use scikit learn, with reference to this example https://www.dataquest.io/blog/machine-learning-tutorial/

Here, we have an RMSE of 46496, which is far better than the previous models.


Haqiqiy
Predicted
0318000.0362600.0
1770000.0641600.0
2851800.0734600.0
3475000.0452577.6
4320000.0305600.0
5305000.0303800.0
6460000.0408300.0
7470000.0436000.0
8468000.0476000.0
9340000.0333600.0
10355000.0374977.6
11308000.0311600.0
12250000.0256600.0
13442000.0452600.0
14228000.0224177.6
15315000.0382000.0
16363000.0325600.0
17395000.0420200.0
18398000.0364777.6
19325000.0312000.0


Videoni tomosha qiling: EXCEL dasturida jadvallar bilan ishlash